Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2401234, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654685

RESUMO

Elasticity, featured by a recoverable strain, refers to the ability that materials can return to their original shapes after deformation. Typically, the elastic strains of most metals are well-known 0.2%. In shape memory alloys and high entropy alloys, the elastic strains can be several percent, as called superelasticity, which are all triggered by external stresses. A superelasticity induced by magnetic field, termed as magneto-superelasticity, is extremely important for contactless work of materials and for developing brand-new large stroke actuators and high efficiency energy transducers. In magnetic shape memory alloys, the twin boundary motion driven by magnetic field can output a strain of several percent. However, this strain is unrecoverable when removing the magnetic field and hence it is not magneto-superelasticity. Here, a giant magneto-superelasticity of 5% in a Ni34Co8Cu8Mn36Ga14 single crystal is reported by introducing arrays of ordered dislocations to form preferentially oriented martensitic variants during the magnetically induced reverse martensitic transformation. This work provides an opportunity to achieve high performance in functional materials by defect engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...